
Modular SB-Prolog Manual

Brian Paxton

15th June 1992

1 Introduction

Although this document is described as a manual, it can be more accurately described as

a brief overview of the facilities available in Modular SB-Prolog. Since the system is based

on SB-Prolog 3.1, and is the result of work on my �nal year project as an undergraduate

at Edinburgh University, a lot of information is already available in the following two

documents :

[1] \SB|Prolog Manual", Saumya K Debray, Department of Computer Science,

University of Arizona, 1988

[2] \The Implementation of a Modular Prolog System Based on Standard ML

Modules", Brian Paxton, Fourth Year Report, Departments of Computer Science

and Arti�cial Intelligence, University of Edinburgh, May 30, 1992

Other work on the modules system can be found in :

[3] \A Calculus for the Construction of Modular Prolog Programs",

D T Sannella and L A Wallen, The Journal of Logic Programming,

volume 12, nos 1 and 2, January 1992, pp 147-178

[4] \Formal Program Development in Modular Prolog : A Case Study",

M G Read and E A Kazmierczak, University of Edinburgh,

Technical Report ECS-LFCS-92-195, January 1992

With this abundance of information already available, this document simply overviews

the facilities available in Modular SB-Prolog and highlights the changes made to the

original system. For an introduction to the basic features of and motivation for the

modules system, see [3]. For a more detailed discussion of SB-Prolog the user is encouraged

to look at [1]. However, due to complexities arising with the extra-logical predicates

like assert/1 and compound/3, the user will �nd [2] an invaluable introduction to the

techniques used by Modular SB-Prolog.

1.1 Terminology

The following is a summary of the terminology used in this document. This terminology is

used because the modules system introduces module constructs called structures and func-

1

tors which are terms already used in the Prolog community. Hopefully this terminology

prevents any such contradictions from becoming problematic.

A Predicate Constant consists of a Predicate Symbol and an Arity.

A Function Constant consists of a Function Symbol and an Arity.

A Function Application consists of a Function Constant and a sequence of Terms

A Predicate Application consists of a Predicate Constant and a sequence of Terms

A Compound Term is a Function Application or Predicate Application.

An Atom is a zero arity Function Application.

A Number is an Integer or a Float.

A Term is anything expressible in the language

(Variable, Atom, Number, Compound Term or List).

A Term is Atomic if it is an Atom or a Number (but not a Variable).

Throughout this document \SB-Prolog" refers to the original (standard) version of

SB-Prolog, and \Modular SB-Prolog" refers to the new system.

2 Syntax

It is su�cient to simply state in this section that Modular SB-Prolog has much the same

syntax as SB-Prolog (and hence C-Prolog) and so is largely standard. A fuller description

is available [1].

I include in Figure 1 a list of the operators used by Modular SB-Prolog for reference

purposes. The list is that of SB-Prolog with the addition of operators for the module

constructs.

The syntax for the module constructs themselves is described below. This syntax is

only acceptable to consult/1.

PROGRAMS prog

prog ::= dec

SIGNATURE BINDINGS sigb

sigb ::= atid = sigexpr

FUNCTOR BINDINGS funb

funb ::= atid(plist) [/ sigexpr] = strexpr

plist ::= atid

1

/sigexpr

1

, ... , atid

N

/sigexpr

N

[sharing patheq

1

and ... and patheq

M

]

patheq ::= id

1

= ... = id

N

STRUCTURE BINDINGS strb

strb ::= atid [/ sigexpr] = strexpr

SIGNATURE BINDINGS sigexpr

sigexpr ::= atid

sig spec end

spec ::= pred atid

1

/nat

1

and ... and atid

N

/nat

N

.

fun atid

1

/nat

1

and ... and atid

N

/nat

N

.

structure specstrb

1

and ... and specstrb

N

.

sharing patheq

1

and ... and patheq

N

.

2

Precedence Type Operator

1200 xfx [':-','-->']

1200 fx ':-'

1198 xfx '::-'

1150 fy mode

1100 xfy ';'

1050 xfy '->'

1000 xfy ','

900 fy [not,'\-',spy,nospy]

760 fx [inherit,pred,fun,functor,signature,structure]

750 xfx sharing

730 xfy and

700 xfy '='

700 xfx [is,'=..','?=','\=','==','\==','@<','@>','@=<','@>=',

'=:=','=\=','<','>','=<','>=']

690 fx [struct,sig]

500 yfx ['+','-','/\','\/']

500 fx ['+','-','\']

450 xfy --->

400 yfx ['*','/','//','<<','>>']

300 xfx mod

200 xfy '^'

100 xfy ':'

Figure 1: The Operators of Modular SB-Prolog

3

spec spec'

specstrb ::= atid/sigexpr

STRUCTURE EXPRESSIONS strexpr

strexpr ::= id

struct dec end

strexpr/sigexpr

atid(strexpr

1

, ... , strexpr

N

)

DECLARATIONS dec

dec ::= atid(term

1

,...,term

N

) [:- atid

1

(term

11

,...),...,atid

M

(term

M1

,...)].

fun atid

1

/nat

1

and ... and atid

N

/nat

N

.

fun atid [/ nat] = id.

pred atid

1

/nat

1

and ... and atid

N

/nat

N

.

structure strb.

inherit atid.

signature sigb.

functor funb.

dec dec'

MODULAR PROLOG IDENTIFIERS id

id ::= atid j atid:id

3 Command Line Options

In general, the interpreter is started as follows:

sbprolog -option

1

-option

2

: : : -option

n

bc �le

The following is a list of the options recognised by Modular SB-Prolog :

T Generates a trace at entry to each called routine.

t Enables tracing of certain events (not of much use).

d Produces a disassembled dump of bc �le into a �le named `dump.pil' and exits.

n Adds machine addresses when producing trace and dump.

s Maintains information for the builtin statistics/0. Default: o�.

m size Allocates size words (4 bytes) of space to the local stack and heap together.

Default: 100000.

p size Allocates size words of space to the program area. Default: 100000.

b size Allocates size words of space to the trail stack. Default: m/5, where m is the

amount of space allocated to the local stack and heap together. This parameter, if

speci�ed, must follow the -m parameter.

4

4 Predicates Available

All the following predicates are available in the pervasive (system) signature. Most are

identical to their SB-Prolog equivalents so descriptions are intentionally sparse to save

space.

The SB-Prolog manual discusses some predicates which are pre�xed with a $. These

predicates are no longer recommended for use as many are not correctly integrated with

the modules system. The user is encouraged to use only the predicates listed in this

manual.

Before beginning this section it is important to point out a feature of Modular SB-

Prolog. Every structure (module) in the modules environment is given a unique internal

name called a `tag' (this is simply an integer). Some of the predicates listed below require

an extra argument which is the tag of the structure in which they are to be executed in

order to perform their task correctly. For predicates that require this extra argument,

Modular Prolog adds the argument automatically. This processing is performed by the

command line, by consult/1, call/2 and by the assert/1 family and the retract/1 family of

predicates. This does mean that a program is listed with this additional argument even

if it did not exist in the original program.

For example, name/2 requires an extra argument, so the call

name(Atom,[116,101,115,116])

is converted to

name(Atom,[116,101,115,116],X)

by Modular SB-Prolog where X is the tag of the structure inside which the call is made.

Note that call/1 does not peform this processing, so the call

call(name(Atom,[116,101,115,116]))

fails as name/2 actually doesn't exist, name/3 is the only executable form of the predicate.

The structure tag can actually be inserted by the user as follows

current_structure(Tag)

name(Atom,[116,101,115,116],Tag)

The tag need not be the tag of the current structure, but in most cases this is what is

required. However, if the user required to perform a name/2 with respect to a structure

whose tag is Y (i.e. create an atom which belongs to structure Y) then the call is simply

name(Atom,[116,101,115,116],Y)

There are in fact two special structure tags used internally by the system. The top

level structure (called `root') has the structure tag 0, and the system (pervasive) structure

5

Actual Predicate Transformed To

current structure/1 current structure/1

name/2 name/3

read/1 read/2

read/2 (Some cases) read/3

compound/3 compound/4

bldstr/3 bldstr/4

=../2 =../3

structure/2 structure/3

Figure 2: Predicates requiring a structure-tag argument (Handled automatically)

has a tag `perv'. If `perv' is passed to any of these special predicates then the action is

performed with respect to the pervasive structure. This is of little use, but is mentioned

for completeness. It is generally the case that if a structure tag passed to a predicate is

not a valid one, an error is displayed and the call fails.

The predicates that require this additional structure tag argument are indicated in-

dividually later. Figure 2 lists these predicates for reference purposes. Some of these

predicates are also described as being \Sensitive to fun X = Y declarations". This refers

to the ability to declare equality over functions and the e�ect of the equalities on these

predicates (this is described in [2]). Any predicates that are \Sensitive to fun X = Y

declarations" can correctly handle these function equalities. The reader is encouraged to

read the sections in [2] which discuss these predicates.

4.1 Consulting Files

consult(File)

consult(File,Opts)

consult(File,Opts,Preds)

Consults a Modular Prolog �le File, using the options given in the list Opts. A list of

all the predicates loaded is given in Preds. The options currently supported are :

v Verbose mode. Displays the names of structures, signatures and functors as they are

processed. The output is similar to that of Standard ML.

t Trace mode. Sets up a trace point on every predicate loaded.

If no list of options is given, the default is [v].

As the consult progresses, warning messages and error messages are displayed on

screen. Warnings are not serious and do not a�ect the consult. Errors are serious, and

the call to consult fails. In most such cases, consult will fail indicating the error that it

encountered. If consulting using verbose mode, the error can be traced quite easily as the

name of a construct is only ever displayed on screen after the processing for that construct

is complete.

6

If a call to consult fails with an error, it is important to point out that the module

constructs loaded before the erroneous one will not be fully built. This is because although

the constructs will be de�ned, any code contained within those constructs will not have

been added to the database (this is done at the end of the consult in one go). The database

is only guaranteed to be consistent if the consult is successful.

4.2 Input and Output

writename(Term) Writes Term out to the current output stream. No home structure

name is displayed, and if the term is a compound term, only the name of the term

is printed (no arguments are printed).

writeqname(Term)As writename/1, but names are quoted where necessary to make the

output acceptable to read/1.

put(Char) The character whose ASCII code is Char is output to the current output

stream.

nl Newline

tab(Num) Num spaces are output to the current output stream.

tell(File) File becomes the current output stream.

tell(File,Num) File becomes the current output stream. If Num is 1 then File is

appended, otherwise File is overwritten.

telling(File) File is the current output stream.

told Closes the current output stream.

get(Char) Char is the ASCII code of the next non-blank printable character from the

current input stream. If the end of �le is reached -1 is returned, but the stream is

not closed.

get0(Char)Char is the ASCII code of the next character from the current input stream.

If the end of �le is reached -1 is returned, but the stream is not closed.

see(File) File becomes the current input stream.

seeing(File) File is the current input stream.

seen Closes the current input stream.

write(Term)Writes Term out to the current output stream. Current operator declara-

tions are considered and all terms are printed along with their home structure name

(no structure name is displayed for terms in the root or pervasive structures).

writeq(Term)Writes Term out to the current output stream. No operators are consid-

ered and names are quoted where necessary (so input is acceptable to read/1).

display(Term) As write/1, but always writes out to the `user' stream (the terminal).

7

print(Term) In this version of Prolog, this is simply another name for write/1.

print_al(N,Term) If Term is a number or an atom, this prints Term left-aligned to a

width N (padding extra spaces to the right). If Term is longer than N then Term is

printed with no padding. If Term is an atom, no structure information is displayed,

only the atom itself.

print_ar(N,Term) As print al/2, but right-aligned.

errmsg(Term) As write/1, but always writes to the `stderr' stream (the standard error

stream).

read(Term) The internal form of read/1 is read/2. (Processed automatically).

read(Term,Vars) The internal form of this is read/3.

read(Term,Tag) Read a term, terminated by a period ('.') from the current input

stream. Sensitive to `fun X = Y' declarations. Processing performed with respect

to the structure whose tag is Tag (usually the current structure). For details, see

[1].

read(Term,Vars,Tag) Read a term, terminated by a period ('.') from the current input

stream. Vars is a list of variables encountered in Term, and is a list of VariableName

= ActualVariable pairs. Sensitive to `fun X = Y' declarations. Processing performed

with respect to the structure whose tag is Tag (usually the current structure).

portray_term(Term)As write/1 but variables are displayed as `Vn' instead of ` internaladdress'.

portray_clause(Clause)Writes Term to the standard output stream, in clause format

(the same form displayed by listing/0). Variables in Clause are displayed as `Vn'.

4.3 Term Comparison

X = Y The terms X and Y are uni�ed.

X ?= Y The terms X and Y can unify (but uni�cation is not actually performed).

X \= Y The terms X and Y cannot unify.

X == Y The terms X and Y are identical. For example `X == Y' fails (unless they have

been explicitly uni�ed earlier).

X \== Y The terms X and Y are not identical.

X =:= Y The arithmetic expressions X and Y are equal when evaulated.

X =\= Y The arithmetic expressions X and Y are not equal when evaulated.

X < Y The arithmetic expression X is less than expression Y when evaluated.

X =< Y The arithmetic expression X is not greater than expression Y when evaluated.

X >= Y The arithmetic expression X is not less than expression Y when evaluated.

8

X > Y The arithmetic expression X is greater than expression Y when evaluated.

The rest of these comparison terms use the SB-Prolog standard order of terms. The

order is as follows (in ascending order) : variables, numbers, atoms, complex terms (or-

dered by arity, then name). However, since the modules system identi�es names local to

a structure by internally pre�xing the name with a structure tag, the ordering of atoms

and compound terms may seem rather convoluted, but necessary.

X @=< Y The term X is not greater than Y.

X @< Y The term X is less than Y.

X @> Y The term X is greater than Y.

X @>= Y The term X is not less than Y.

compare(Op,X,Y)The result of comparing X and Y is Op, which may be '>', '<' or '='.

Op need not be bound at the time of call.

4.4 Arithmetic

X is Y The number X is the result of evaluating the arithmetic expression Y.

eval(X,Y) This is equivalent to Y is X.

floatc(Num,Mant,Exp) Here, Num = Mant� 2

Exp

; 0 �Mant � 1

exp(X,Y) Here, Y = e

X

(X = log

e

(Y)).

square(X,Y) Here, Y = X

2

(X =

p

Y).

sin(X,Y) Here, Y = sin(X) (X = arcsin(Y)),

��

2

� Y �

�

2

.

floor(X,Y) Integer to oat conversion (and vice versa). The integer Y is the largest

integer not greater than the absolute value of oat X.

The usual arithmetic operators can be used inside arithmetic expressions. These are

listed as follows :

1. X + Y addition.

2. X - Y subtraction.

3. X * Y multiplication.

4. X / Y division.

5. X // Y integer division.

6. X mod Y integer modulo.

7. -X unary minus.

9

8. X /\ Y integer bitwise conjunction.

9. X \/ Y integer bitwise disjunction.

10. X << Y integer bitwise shift left by Y places.

11. X >> Y integer bitwise shift right by Y places.

12. \ integer bitwise negation.

13. sqrt(X) square root.

14. square(X) square.

15. integer(X) convert to integer.

16. float(X) convert to oat.

17. exp(X) exponential.

18. ln(X) natural logarithm.

19. sin(X) sine.

20. arcsin(X) inverse sine.

The expressions 13 through 20 are actually converted into separate calls to oor/2,

oatc/2, exp/2, square/2 and sin/2 automatically by the system. For example, the call

X is 1 + sqrt(Y).

becomes the conjunction

square(U,Y),

X is 1 + U.

4.5 Term Handling

atom(Term) Term is an atom (which here means any 0-arity compound term).

atomic(Term) Term is an atom (which here means any 0-arity compound term) or a

number.

integer(Term) Term is an integer.

number(Term) Term is an integer or a oat.

arg(N,Term,Item) Item is the N

th

argument of compound term Term. Arguments are

numbered from 1 and the call fails if N is out of range.

compound_term(Term) Term is an compound term.

arity(Term,Arity) Arity is the arity of compound term Term.

10

real(Term) Term is a oating point number.

float(Term) Term is a oating point number.

is_buffer(Term) Term is a bu�er (see later).

function(Term) Term is a function application.

predicate(Term) Term is a predicate application.

dismantle_name(Atom,Name,Tag) The name (printable part) of Atom is Name and its

home structure tag is Tag. Suitable combinations of arguments can be used to build

and decompose atoms. For example, to move an atom Atom to a structure whose

tag is New, use the following :

dismantle_name(Atom,Name,_),

dismantle_name(NewAtom,Name,New)

var(Term) Term is an unbound variable.

nonvar(Term) Term is not an unbound variable.

gennum(Number) Successive calls return unique integers.

gensym(Atom,Term)Uses gennum/1 to generate a distinct integer which is concatenated

to the atom Atom to give Term. For example :

gensym(test,X)

would return `test124' (if the current gennum/1 value was 124).

X =.. Y The internal form of =../2 is =../3. (Processed automatically).

'=..'(X,[Name|List],Tag) The compound term X has name Name and arguments

given in List. Sensitive to `fun X = Y' declarations. Processing performed with

respect to the structure whose tag is Tag (usually the current structure).

name(Atom,List) The internal form of name/2 is name/3. (Processed automatically).

name(Atom,List,Tag) Atom is an atom or a number which corresponds to the list of

ASCII codes List. Sensitive to `fun X = Y' declarations. Processing performed with

respect to the structure whose tag is Tag (usually the current structure).

compound(Term,Name,Arity) The internal form of compound/3 in compound/4. (Pro-

cessed automatically).

compound(Term,Name,Arity) The compound term Term has name Name and arity Ar-

ity. Sensitive to `fun X = Y' declarations. Processing performed with respect to the

structure whose tag is Tag (usually the current structure). This is the new name of

the SB-Prolog predicate functor/3.

11

bldstr(Name,Arity,Term) The internal form of bldstr/3 is bldstr/4. (Processed auto-

matically).

bldstr(Name,Arity,Term,Tag) Given Name and Arity, a compound term Name/Arity

is built. Sensitive to `fun X = Y' declarations. Processing performed with respect

to the structure whose tag is Tag (usually the current structure).

4.6 Database

NOTES :

1. Some of the database predicates used here can take an optional argument which

identi�es a structure inside which that operation is to be performed. For example,

the call :

assert(data(1),X)

(where X is the tag of a structure `test') would assert the clause data(1) into the

structure `test'.

However, any database manipulation predicate which can take an optional structure

tag argument has a restriction imposed on the clause type it can take as an argument

(this is discussed in detail in [2]). If an operation is to be performed in a remote

structure, the clause must be moved to that structure before the operation can go

ahead. This moving operation cannot accept any clauses which contain `Outer-

structure references'. This basically means that if the clause has to be moved, it

can only contain terms belonging to the same structure (or the pervasive structure).

For example :

assert(test(one),X) % Okay

assert(test(x:one),X) % Illegal

assert(x:test(x:one),X) % Okay

assert(x:test(user),X) % Okay

This last is legal as user/0 is a pervasive function. The predicates which can generate

this error are the assert family, retract/2, retractall/2 and call/2.

2. When asserting a clause for a predicate into the database an index is set up on the

�rst argument of the predicate (a kind of optimization). This index can be changed

by using a call to index/3. For example, to set up an index on the second argument

of the predicate test/3 instead of the �rst use the declaration :

:- index(test,3,2).

This index is respected by all assert predicates.

12

3. Arguments to any predicate to assert or retract a clause cannot take as an argument

a function application of a function declared during a consult. In other words, any

function declared using a `fun X' or `fun X = Y' declaration is not a valid argument

to assert or retract and the call fails with an error.

Adding clauses to the database :

assert(Clause) Add clause Clause to the end of the clauses for the corresponding

predicate.

assert(Clause,Tag) Add clause Clause to the end of the clauses for the corresponding

predicate inside the structure whose tag is Tag.

assert(Clause,Ref) Add clause Clause to the end of the clauses for the corresponding

predicate. Ref is bound to the database reference of the clause.

assert(Clause,Ref,Tag) Add clause Clause to the end of the clauses for the corre-

sponding predicate inside the structure whose tag is Tag. Ref is bound to the

database reference of the clause.

assert(Clause,AZ,N,Ref) Add clause Clause into the database using indexing on the

N

th

argument (if N is 0 then no index is created). If AZ equals 0 then the clause is

added to the beginning of the clauses for the corresponding predicate. If AZ equals

1 then the clause is added to the end. Ref is bound to the database reference of the

clause.

asserta(Clause) As assert/1, but add to the end of the clauses for the corresponding

predicate. Due to a restriction imposed on asserta/1,2,3, no indexing is placed on

arguments to clauses asserted using asserta/1,2,3.

asserta(Clause,Tag) As assert/2, but add to the beginning of the clauses for the

corresponding predicate.

asserta(Clause,Ref) As assert/2, but add to the beginning of the clauses for the

corresponding predicate.

asserta(Clause,Ref,Tag) As assert/3, but add to the beginning of the clauses for the

corresponding predicate.

assertz(Clause) As assert/1.

assertz(Clause,Tag) As assert/2.

assertz(Clause,Ref) As assert/2.

assertz(Clause,Ref,Tag) As assert/3.

asserti(Clause,N) As assert/1, but an index is placed on the N

th

argument of the

clause.

asserti(Clause,N,Tag) As assert/2, but an index is placed on the N

th

argument of

the clause.

13

assert_union(Head1,Head2) Head1 and Head2 are predicate applications. A �nal

clause is added to the code for the predicate of Head1 :

Head1 :- Head2.

This is a very low level assert and the arguments given in Head1 and Head2 are

ignored - it is only the predicate name and arity of each argument that is important.

Removing clauses from the database :

retract(Clause) Remove the �rst clause which matches Clause from the database.

retract(Clause,Tag)Remove the �rst clause which matches Clause inside the structure

whose tag is Tag. Cannot accept outer-structure references.

retractall(Head) Remove all clauses from the database whose head matches Head.

retractall(Head,Tag)Remove all clauses whose head matches Head from the structure

whose tag is Tag. Cannot accept outer-structure references.

abolish(Head) Head is a predicate application and all clauses for that predicate are

removed.

abolish(Name,Arity) All clauses for the predicate Name/Arity are removed.

Accessing clauses from the database :

clause(Head,Body) Given Head, the database is searched for clauses matching Head

and the body of that clause is uni�ed with Body. Other matches are generated

through backtracking.

clause(Head,Body,Ref)As clause/2, but the database reference of the matching clause

is also returned in Ref. Can be called with Head set or Ref set.

listing(Pred) Pred is a name/arity pair or a list of pairs. The predicates named are

listed out.

listing Lists out all the currently de�ned signatures, structures and functors. The

format is clear, but not in a form suitable for a future consult/1.

list_module(Tag) Lists the contents of the structure whose tag is Tag.

Internal database predicates :

globalset(Head) Head should be a predicate application with one argument (of the

form Name(Argument)) where the argument is either a variable, number or atom.

This predicate has a similar e�ect to the call

retract(Name(_)), assert(Name(Argument)).

14

If argument is a variable, the e�ect of this call is to make the variable `global' and

accessible through a call to name/1.

recorda(Key,Term,Ref) Term is recorded as the �rst item for key Key, and has the

database reference Ref. If Key is a compound term, then only the name of that

term is signi�cant.

recordz(Key,Term,Ref) Term is recorded as the last item for key Key, and has the

database reference Ref.

recorded(Key,Term,Ref) Given a key Key, Term and Ref are successively uni�ed with

items stored under that key.

erase(Ref) Erase an entry whose database reference is Ref.

instance(Ref,Term) Given a database reference Ref, Term is the entry recorded there.

Accessing state of the database :

current_predicate(Name,Term)Generates, through backtracking, all currently de�ned

predicates. A predicate test/2 would return Name as `test' and Term as test(,).

current_function(Name,Term) As current predicate/2, but for functions only.

current_atom(Atom) As current predicate/2, but for atoms only.

predicate_property(Term,Type)Given a term Term corresponding to a predicate ap-

plication, Type is bound to the type of that predicate (`interpreted' or `compiled').

Fails if the predicate is not de�ned.

pervasive(Term) Term is a name/arity pair corresponding to a predicate or function

constant. Succeeds if that constant is a pervasive function or predicate.

pervasive0(Term) Term is a function or predicate application and the call succeeds if

that term corresponds to a pervasive function or predicate.

pervasive_function(Term) As pervasive/1 but succeeds for pervasive functions only.

pervasive_function0(Term)As pervasive0/1 but succeeds for pervasive functions only.

pervasive_predicate(Term)As pervasive/1 but succeeds for pervasive predicates only.

pervasive_predicate0(Term) As pervasive0/1 but succeeds for pervasive predicates

only.

functor_name(Name) Generates, through backtracking, the names of all currently de-

�ned functors.

structure_name(Name) Generates, through backtracking, the names of all currently

de�ned structures.

signature_name(Name) Generates, through backtracking, the names of all currently

de�ned signatures.

15

symtype(Term,Type) Term is a function or predicate application and Type is bound to

0 if Term corresponds to a function, 1 for an interpreted predicate, 2 for a compiled

predicate and 3 for a bu�er.

4.7 Sets

setof(Pattern,Call,Set) Set is the ordered set of patterns (Pattern) such that Call

is provable. Succeeds if Set is empty. As in Standard Prolog use /̂2 to existentially

quantify variables in the call, as follows :

setof(X, X^member(X,List), Set)

bagof(Pattern,Call,List) As setof/3, but List is unordered and may contain dupli-

cates.

findall(Pattern,Call,List)As bagof/3, but any variables in Call which do not occur

in Pattern are treated as local and alternatives are not returned for di�erent bindings

of these variables.

4.8 List Utilities

length(List,Len) Len is the length of List.

append(List1,List2,Result) Classic list concatenation.

member(Item,List) Classic list membership.

sort(List,Sorted) List is sorted into the list Sorted in the standard order. Duplicates

are removed.

keysort(List,Sorted) List is a list of Key{Value pairs. The list is sorted by the keys

into list Sorted.

reverse(List,Reverse) Reverse is the reverse of List.

merge(List1,List2,Merged)Merged is the concatenation of List1 and List2, with du-

plicates removed.

absmember(Item,List) As member/2, but uses ==/2 for comparisons and not uni�ca-

tion.

absmerge(List1,List2,Merged)As merge/3, but duplication checks are performed us-

ing ==/2 and not uni�cation.

closetail(List) If the tail of List is a variable, the variable is bound to the empty list

(and so `closes' the tail of the list). For example :

| ?- X = [a,b,c|Y],closetail(X).

X = [a,b,c]

Y = []

16

nthmember(Item,List,N) Item is the N

th

member of List. Various combinations of

unbound arguments can be used.

4.9 Making Calls

(X,Y) Conjunction

(X;Y) Disjunction

(X -> Y) If X then Y else fail.

(X -> Y ; Z) If X then Y else Z.

not Goal If Goal succeeds, then fail, else succeed.

\+ Goal As not/1.

call(Goal) Execute Goal.

call(Goal) Execute Goal inside the structure whose tag is Tag. Goal must not contain

any `Outer-structure references' (discussed earlier under assert/2).

4.10 Structure Handling

current_structure(Tag)The internal form of current structure/1 is current structure/2.

(Processed automatically).

current_structure(Tag,Current) Tag is the tag of the current structure. The second

argument is added automatically by the system and is the current structure tag.

This predicate is therefore de�ned simply as :

current_structure(X,X).

structure(Tag,Name) As structure/3 with respect to the top level (root) structure.

(Processed automatically).

structure(Tag,Name,WRT) Internal form of structure/3 is structure/4.

structure(Tag,Name,WRT,Current) Tag is the structure tag of the structure whose

name is Name with respect to the structure whose tag is WRT. Current must be

the tag of the current structure.

4.11 Operating System Access

cputime(Time) Time is the elapsed time since Prolog was started (in milli-seconds).

syscall(Number,Args,Result) Executes the Unix system call number Number, with

arguments Args, giving the result Result. For details, see [1].

system(Command) Invokes a shell to execute Command. For example :

system(ls).

system('cat testfile | more').

17

4.12 Other Stu�

statistics Displays information on memory usage.

statistics(Keyword,Info) Given Keyword returns statistical information in Info as

follows :

Keyword Info

runtime [Prolog cputime, time since last statistics/2 call]

memory [total memory,0]

core [total memory,0]

program [program space used, program space free]

heap [program space used, program space free]

global stack [global stack used, global stack free]

loca stack [local stack used, local stack free]

trail [trail stack used, trail stack free]

garbage collection [0,0]

stack shifts [0,0]

pred_undefined(Term) Given a predicate application, succeeds if that predicate is un-

de�ned.

break Suspends execution and enters a break level. To terminate break level, press

CTRL-D and program will continue execution. break/0 has the same e�ect as

pressing CTRL-C during execution.

abort Aborts execution and goes back to top level.

repeat Always succeeds, even on backtracking.

loaded_mods(Name) Returns the names, through backtracking, of all the system library

modules currently loaded. (Nothing to do with the new module system.)

defined_mods(Name,Exportlist) Returns the names and export lists, through back-

tracking, of all the system library modules currently available. (Nothing to do with

the new module system.)

load(File) Load a �le containing compiled Prolog code.

! Discard all choice points made since parent goal was called.

fail Always fails.

true Always succeeds.

halt Terminate Prolog session.

getclauses(File,Clauselist) Used by the compiler and the old version of consult to

load in all the clauses for a given �le. Clauselist is a list of entries of the following

form:

18

pred(name,arity,unused,unused,clause list)

where clause list is a list of the following entries :

fact(clause head)

or

rule(clause head,clause body)

This predicate cannot be used to load clauses inside Modular Prolog constructs.

getclauses(File,Clauselist,Predlist)As getclauses/2, but also returns Predlist, a

list of the predicates loaded (given as name/arity pairs).

attach(Item,List)Given an open ended list List (a list of the form [element

1

, element

2

,

..., element

N

jVariable]), Item is added into the tail of the list. For example :

| ?- X = [a,b|_], attach(c,X).

X = [a,b,c|_1396136]

yes

expand_term(Term1,Term2)Term1 is expanded to form Term2. In Modular Prolog, this

simply means that if Term1 is a de�nite clause grammar rule, then it is converted

to clause form in Term2. If it is not a grammar rule, Term1 = Term2.

4.13 Tracing Facilities

In order to trace a predicate in Modular SB-Prolog, the predicate concerned has to have a

trace point or a spy point set on it | no other predicates will be traced. In order to make

setting trace points easier, the `t' option in consult/2,3 can be used to automatically set

trace points on all the predicates that are loaded during that consult.

Tracing works in much the same way as any other tracing package and traces the

predicate on call, successful exit and failure. The following commands are available :

c newline creep

a abort

b break (enter a break level)

f fail

h help

l leap (to next spy point)

n nodebug

q quasi-skip (as skip, but stops at spy points)

s skip (do not trace the current goal)

r retry (go back to Call port of current goal)

e end the Prolog session

19

Tracing is described in more detail in [1] and has not been changed in any way.

debug Enable debugging mode.

nodebug Disable debugging mode.

trace(Pred) Pred is a name/arity pair (or a list of such pairs) and trace points are set

on those predicates.

untrace(Pred) As trace/1, but removes trace points.

spy(Pred) As trace/1, but sets spy points.

nospy(Pred) As trace/1, but removes spy points.

trace This is a very low level tracer which simply displays, at the Warren Abstract

Machine level, calls to every predicate (including pervasive ones). Not of much use

and prints out a large amount of information.

untrace Disables the tracing set by trace/0.

debugging Displays information about the status of debug mode and currently set spy

and trace points.

tracepreds(List) Returns a list of all predicates which currently have trace points set.

List is a list of name/arity pairs.

spypreds(List) As tracepreds/1, but for spy points.

4.14 De�nite Clause Grammars

dcg(Rule,Clause) Converts a DCG rule Rule, to a Prolog clause Clause.

phrase(Start,List)The normal method of calling a grammar. Start is the start symbol

of the grammar (a non-terminal) and List is the sentence to be parsed.

phrase(Start,In,Out) Calls a grammar. Start is the grammar start symbol, In is the

sentence to be parsed (a list), and Out is what is left over after parsing is complete.

'C'(L1,Terminal,L2) Used by DCGs and is de�ned `C'([XjS],X,S).

4.15 Library Predicates

access(File,Mode) Calls the operating system to access a �le. For example,

access(test,0).

tests to see if the �le `test' exists.

access(File,Mode,Success) As access/2 but Success is the exit level returned by the

operating system (normally 0).

20

call_ref(Call,Ref) Calls the predicate whose database reference is Ref, using Call as

the call.

call_ref(Call,Ref,Tr)As call ref/2 and Tr is used to handle `trust' optimization. See

[1] for details.

errno(Number) The last error which occured during a call to an operating system func-

tion.

flags(Number,Value) Can be used to set low level tracing, etc. but is not of much use

to the user.

index(Name,Arity,N) Usually the compiler or the assert family creates a predicate

which has an index on the �rst argument. A call to index/3 will set an index on the

N

th

argument of the predicate Name/Arity, and all clauses created after this will

respect this declaration.

mode(Mode)Mode declarations for use by the compiler. See [1] for details.

mode(Name,Arity,Mode)Mode declarations for use by the compiler. See [1] for details.

nodynload(Name,Arity) Disables the dynamic loading of predicate Name/Arity. Since

the dynamic loader in Modular SB-Prolog only loads pervasive predicates (a neces-

sary restriction), the argument must correspond to a pervasive predicate (otherwise

the declaration will do nothing).

op(Prec,Type,Name) Sets up an operator whose name is Name, with type Type and

precedence Prec. Name may be a list of names. Operator types are fx, fy, xf, yf,

xfx, xfy or yfx.

save(File)Dumps Prolog's memory into the �le File. The program space, heap, stacks

and internal registers are all saved. The state can be restored using restore/1.

restore(File) Restores Prolog's memory from the �le File, which was previously saved

using save/1.

exists(File) Succeeds if File exists in the current directory.

4.16 The Pro�ler

(This is identical to the SB-Prolog pro�ler so see [1] for details.)

The pro�ler allows the user to set time points and count points on predicates | a

time point times the length of time a call to a predicate takes to execute and a count

point counts the number of calls to a predicate.

count(Pred) Pred is a name/arity pair, or a list of pairs, and count points are set on

each predicate in the list.

time(Pred) As count/1, but sets time points.

nocount(Pred) As count/1, but removes count points.

21

notime(Pred) As count/1, but removes time points.

profiling Displays the status of pro�ling, and the predicates with time or count points

set on them.

prof_reset(Pred) As count/1, but simply resets the counter and timer values on the

predicates to 0.

resetcount(Pred) As count/1, but simply resets the counter values on the predicates

to 0.

resettime(Pred)As count/1, but simply resets the timer values on the predicates to 0.

profile Disables pro�ling.

noprofile Enables pro�ling.

timepreds(Preds) Returns a list of predicates which have time points set on them.

Preds is a list of name/arity pairs.

countpreds(Preds) As timepreds/1 but for count points.

prof_stats Displays time and counting information on all pro�led predicates.

prof_stats(Reset)As prof stats/0 but if Reset equals 1, then all count and time points

are reset to 0.

4.17 Handling Bu�ers

Bu�ers are introduced in [1] but are used only for low level system predicates. I shall not

discuss the following predicates in any detail, but mention them only for completeness.

alloc_perm(Size,Name) A bu�er of size Size (in bytes) is allocated in the program

space (and so is permanent).

alloc_heap(Size,Name) A bu�er of size Size (in bytes) is allocated on the heap (and

so is deallocated on backtracking).

trimbuff(Type,Name,Length) The bu�er Name is trimmed to be Length bytes long (if

possible). Type is 0 for a program space bu�er, 1 for a heap bu�er.

substring(Dir,NumBytes,Const,Locin,Buff,Locout) ???

subnumber(Dir,NumBytes,NumCon,Locin,Buff,Locout) ???

subdelim(Dir,Delim,Const,Locin,Buff,Locout) ???

conlength(Term,Length) Given a term Term, its length is returned in Length. Term

may be an atom, a bu�er or an integer. Note that if the argument is an atom,

the length returned is the length of the atom plus the structure tag information,

which takes up a minimum of 3 bytes. To remove structure tag information, use

dismantle name/3 as follows :

22

dismantle_name(Atom,Newatom,_),

conlength(Newatom,Length).

hashval(Arg,Size,Hashval) Hashes values ???

5 System Functions

The following is a list of the pervasive functions listed in the pervasive signature. It is

included here for reference only.

De�nite Clause Grammars :

'- ->'/2 'fg'/0

'fg'/1

Operators (used by op/3) :

fx/0 xfx/0

fy/0 xfy/0

yfx/0 xf/0

yf/0

Files :

stderr/0 end of �le/0

user/0

Statistics (used by statistics/2) :

runtime/0 core/0

memory/0 stack shifts/0

heap/0 program/0

global stack/0 local stack/0

trail/0 garbage collection/0

Predicate types (used by predicate property/2) :

interpreted/0 compiled/0

Compare (used by compare/3) :

'<'/0 '>'/0

'='/0

Mathematical (used by is/2) :

23

'/'/2 '-'/2

'<<'/2 '+'/2

'-'/1 '+'/1

'//'/2 '\/'/2

'>>'/2 '/\'/2

'*'/2 '\'/1

mod/2 sqrt/1

square/1 arcsin/1

integer/1 oat/1

exp/1 ln/1

sin/1

Compile/consult/etc arguments :

'++'/0 t/0

'?'/0 v/0

nv/0 a/0

c/0 d/0

e/0 s/0

'+'/0 '-'/0

Others :

':'/2 '/'/2

perv/0 sharing/2

inherit/1 pred/1

fun/1 functor/1

structure/1 signature/1

struct/1 sig/1

and/2 '[]'/0

'.'/2 '::-'/2

':-'/1 ':-'/2

6 The Compiler

I will not discuss the compiler here, but refer to [1] instead. The compiler remains is

exactly the same form as SB-Prolog and so is used in exactly the same way.

If a Modular Prolog user wishes to run a compiled SB-Prolog program, there are

problems. The compiler currently compiles only standard SB-Prolog code and cannot

accept Modular SB-Prolog code. Not only that, if the resulting compiled code is loaded

into Modular SB-Prolog it is loaded into the pervasive structure. Since the pervasive

structure has a well-de�ned signature, the code that has been loaded will actually be

hidden inside the pervasive structure and cannot be accessed directly from the command

line. A simple hack is available to run these compiled programs and is as follows : Instead

of typing calls at the command line as normal, type the following :

24

$read(X), call(X).

and then type the call you wish to make. This works because $read/1 is an internal system

read routine which ignores all module information and does not process input like other

versions of read.

7 Known Bugs

The following is a list of the known bugs in Modular SB-Prolog. Since SB-Prolog is itself

a buggy system, most of these bugs are inherited from the original system and are not a

consequence of the modules system.

1. Decompilation of clauses (for listing/0,1, retract/1,2, etc.)

If we assert the following clauses into the database :

test(a(X,Y),Y).

test(a(X,Y),X). *

test(a(X,Y,Z),Y).

test(a(X,Y,Z),Z).

The only clause that can be decompiled is the second one (marked *). The program

executes correctly, but cannot be decompiled. Decompilation is required when listing

clauses, retracting clauses or using clause/2,3.

(For those that are interested, this is because when a clause is asserted into the

database using assert/1, the clause is compiled into two di�erent forms - one for

execution, and one for decompilation. The code used for execution seems �ne, but

there is (at least one) bug in the code for decompilation).

2. Certain clauses displayed using portray clause/1 do not display very well. For ex-

ample :

| ?- portray_clause((test :- one,(two;three))).

test :-

one,

(two ;

three

).

yes

3. If a number is passed to currsym/2 instead of a bu�er, a function application or a

predicate application, the Prolog system is terminated (instead of simply failing the

call).

4. When moving clauses to remote structure in order to perform a call/2, assert/2 or

retract/2, if the predicate in the head of the clause is a pervasive one, then all other

items in the clause must also be pervasive. For example :

25

| ?- structure(X,a),

assert(atom(one),X).

*** Error: Cannot move clause - contains references to substructures

no

5. The pro�ler predicates notime/1 and nocount/1 are buggy, and currently do not

remove time or count points on predicates. (The call succeeds, but nothing happens).

6. The �nal bug seems to be a bug in the compiler, so is not of immediate concern

to Modular SB-Prolog. This bug is di�cult to trace, but generally, problems arise

when using clauses of the form :

test(......) :-

!,

calla -> callb ; callc.

This clause will execute correctly when consulted (asserted) into the database, but

will not execute if compiled. This can be very di�cult to spot, but is easily recti�ed

by placing parenthesis around the conditional :

test(......) :-

!,

(calla -> callb ; callc).

8 Di�erences from SB-Prolog

Some of the major di�erences between SB-Prolog and Modular SB-Prolog are given here

for reference.

� The SB-Prolog predicate functor/3 is now called compound/3.

� There are no extension table facilities in Modular SB-Prolog.

� The dynamic loader cannot be used for user predicates, only system (pervasive)

ones.

� The macro expander is not used by the new version of consult/1, but remains intact

for use by the old version (now called $oldconsult/1) and the compiler.

9 Errata to SB-Prolog Manual

The SB-Prolog manual distributed with version 3.1 of the system is actually for SB-Prolog

version 3.0. This means that several items are out of date. These are as follows:

� Sections 4.3 and parts of 5.2 discuss the comparison of integers and oats and a

technique whereby numbers are considered equal if they are `close enough'. This

was introduced to get round the problems of �nite precision oating point numbers.

This feature has been removed, so these sections should be ignored.

26

� Section 5.2 does not mention the introduction of the arithmetic functions sqrt/1,

square/1, integer/1, etc. which have been added to the system. The discussion

given in this manual is consistent with version 3.1 of SB-Prolog.

27

Index

'<<'/2, 24

'<'/0, 23

'<'/2, 8

'>>'/2, 24

'>'/0, 23

'>'/2, 9

'>='/2, 8

'n+'/1, 17

'n='/2, 8

'n=='/2, 8

'̂ '/2, 16

'*'/2, 24

'+'/0, 24

'+'/1, 24

'+'/2, 24

'++'/0, 24

','/2, 17

'- ->'/2, 23

'->'/2, 17

'-'/0, 24

'-'/1, 24

'-'/2, 24

'.'/2, 24

'/'/2, 24

'//'/2, 24

':'/2, 24

':-'/1, 24

':-'/2, 24

'::-'/2, 24

';'/2, 17

'=<'/2, 8

'=n='/2, 8

'='/0, 23

'='/2, 8

'=..'/2, 11

'=..'/3, 11

'=:='/2, 8

'=='/2, 8

'?'/0, 24

'?='/2, 8

'C'/3, 20

'[]'/0, 24

'/\'/2, 24

'\'/1, 24

'\/'/2, 24

'fg'/0, 23

'fg'/1, 23

a/0, 24

abolish/1, 14

abolish/2, 14

abort/0, 18

absmember/2, 16

absmerge/3, 16

access/2, 20

access/3, 20

alloc heap/2, 22

alloc perm/2, 22

and/2, 24

append/3, 16

arcsin/1, 24

arg/3, 10

argument indexing, 12

arithmetic operators, 9

arity/2, 10

assert/1, 13

assert/2, 13

assert/3, 13

assert/4, 13

assert union/2, 14

asserta/1, 13

asserta/2, 13

asserta/3, 13

asserti/2, 13

asserti/3, 13

assertz/1, 13

assertz/2, 13

assertz/3, 13

atom/1, 10

atomic/1, 10

attach/2, 19

bagof/3, 16

bldstr/3, 12

bldstr/4, 12

break/0, 18

c/0, 24

call/1, 17

28

call/2, 17

call ref/2, 21

call ref/3, 21

clause/2, 14

clause/3, 14

closetail/1, 16

compare/3, 9

compile/0,1,2,3,4, 24

compiled/0, 23

compound/3, 11

compound/4, 11

compound term/1, 10

conlength/2, 22

consult/1,2,3, 6

core/0, 23

count/1, 21

countpreds/1, 22

cputime/1, 17

current atom/1, 15

current function/2, 15

current predicate/2, 15

current structure/1, 17

current structure/2, 17

d/0, 24

dcg/2, 20

debug/0, 20

debugging/0, 20

de�ned mods/2, 18

dismantle name/3, 11

display/1, 7

e/0, 24

end of �le/0, 23

erase/1, 15

errmsg/1, 8

errno/1, 21

eval/2, 9

exists/1, 21

exp/1, 24

exp/2, 9

expand term/2, 19

fail/0, 18

�ndall/3, 16

ags/2, 21

oat/1, 11, 24

oatc/3, 9

oor/2, 9

fun/1, 24

function/1, 11

functor/1, 24

functor name/1, 15

fx/0, 23

fy/0, 23

garbage collection/0, 23

gennum/1, 11

gensym/2, 11

get/1, 7

get0/1, 7

getclauses/2, 18

getclauses/3, 19

global stack/0, 23

globalset/1, 14

halt/0, 18

hashval/3, 23

heap/0, 23

index/3, 21

inherit/1, 24

instance/2, 15

integer/1, 10, 24

interpreted/0, 23

is/2, 9

is bu�er/1, 11

keysort/2, 16

length/2, 16

list module/1, 14

listing/0, 14

listing/1, 14

ln/1, 24

load/1, 18

loaded mods/1, 18

local stack/0, 23

member/2, 16

memory/0, 23

merge/3, 16

mod/2, 24

mode/1, 21

mode/3, 21

name/2, 11

29

name/3, 11

nl/0, 7

nocount/1, 21

nodebug/0, 20

nodynload/2, 21

nonvar/1, 11

nopro�le/0, 22

nospy/1, 20

not/1, 17

notime/1, 22

nthmember/3, 17

number/1, 10

nv/0, 24

op/3, 21

outer-structure references, 12

perv/0, 24

pervasive/1, 15

pervasive0/1, 15

pervasive function/1, 15

pervasive function0/1, 15

pervasive predicate/1, 15

pervasive predicate0/1, 15

phrase/2, 20

phrase/3, 20

portray clause/1, 8

portray term/1, 8

pred/1, 24

pred unde�ned/1, 18

predicate/1, 11

predicate property/2, 15

print/1, 8

print al/2, 8

print ar/2, 8

prof reset/1, 22

prof stats/0, 22

prof stats/1, 22

pro�le/0, 22

pro�ling/0, 22

program/0, 23

put/1, 7

read/1, 8

read/2, 8

read/3, 8

real/1, 11

recorda/3, 15

recorded/3, 15

recordz/3, 15

repeat/0, 18

resetcount/1, 22

resettime/1, 22

restore/1, 21

retract/1, 14

retract/2, 14

retractall/1, 14

retractall/2, 14

reverse/2, 16

runtime/0, 23

s/0, 24

save/1, 21

see/1, 7

seeing/1, 7

seen/0, 7

setof/3, 16

sharing/2, 24

sig/1, 24

signature/1, 24

signature name/1, 15

sin/1, 24

sin/2, 9

sort/2, 16

spy/1, 20

spypreds/1, 20

sqrt/1, 24

square/1, 24

square/2, 9

stack shifts/0, 23

standard order, 9

statistics/0, 18

statistics/2, 18

stderr/0, 23

struct/1, 24

structure tag argument

optional, 12

required, 5

structure/1, 24

structure/2, 17

structure/3, 17

structure/4, 17

structure name/1, 15

subdelim/6, 22

subnumber/6, 22

30

substring/6, 22

symtype/2, 16

syntax, 2

syscall/3, 17

system/1, 17

t/0, 24

tab/1, 7

tell/1, 7

tell/2, 7

telling/1, 7

time/1, 21

timepreds/1, 22

told/0, 7

trace/0, 20

trace/1, 20

tracepreds/1, 20

trail/0, 23

trimbu�/3, 22

true/0, 18

untrace/0, 20

untrace/1, 20

user/0, 23

v/0, 24

var/1, 11

write/1, 7

writename/1, 7

writeq/1, 7

writeqname/1, 7

xf/0, 23

xfx/0, 23

xfy/0, 23

yf/0, 23

yfx/0, 23

31

